Problem A.30

A unitary transformation is one for which $\hat{U}^{\dagger}\hat{U} = 1$.

- (a) Show that unitary transformations preserve inner products, in the sense that $\langle \hat{U}\alpha | \hat{U}\beta \rangle = \langle \alpha | \beta \rangle$, for all vectors $|\alpha \rangle$, $|\beta \rangle$.
- (b) Show that the eigenvalues of a unitary transformation have modulus 1.
- (c) Show that the eigenvectors of a unitary transformation belonging to distinct eigenvalues are orthogonal.

[TYPO: This should be the identity matrix I.]

Solution

Part (a)

Let \hat{U} be a unitary transformation: $\hat{U}^{\dagger}\hat{U} = I$. The inner product $\langle \hat{U}\alpha | \hat{U}\beta \rangle$ can be evaluated with respect to an orthonormal basis as shown in Equation A.60 on page 472 of the textbook.

$$\begin{split} \langle \hat{U}\alpha \,|\, \hat{U}\beta \rangle &= (\mathsf{U}\mathsf{a})^{\dagger}(\mathsf{U}\mathsf{b}) \\ &= (\mathsf{a}^{\dagger}\mathsf{U}^{\dagger})(\mathsf{U}\mathsf{b}) \\ &= \mathsf{a}^{\dagger}(\mathsf{U}^{\dagger}\mathsf{U})\mathsf{b} \\ &= \mathsf{a}^{\dagger}(\mathsf{I})\mathsf{b} \\ &= \mathsf{a}^{\dagger}\mathsf{b} \\ &= \langle \alpha \,|\, \beta \rangle \end{split}$$

Another way to prove the result is as follows.

$$U\alpha | U\beta \rangle = \langle U\alpha | U | \beta \rangle$$
$$= \langle \alpha | \hat{U}^{\dagger} \hat{U} | \beta \rangle$$
$$= \langle \alpha | \mathbf{I} | \beta \rangle$$
$$= \langle \alpha | \cdot (\mathbf{I} | \beta \rangle)$$
$$= \langle \alpha | \cdot (| \beta \rangle)$$
$$= \langle \alpha | \beta \rangle$$

Therefore, unitary transformations preserve inner products.

Part (b)

Suppose that λ is an eigenvalue of the unitary transformation \hat{U} : $\hat{U}|\alpha\rangle = \lambda |\alpha\rangle$. Then

$$\begin{split} \langle \alpha \mid \alpha \rangle &= \langle \alpha \mid \cdot (\mid \alpha \rangle) \\ &= \langle \alpha \mid \cdot (\mid \alpha \rangle) \\ &= \langle \alpha \mid 1 \mid \alpha \rangle \\ &= \langle \alpha \mid \hat{U}^{-1} \hat{U} \mid \alpha \rangle \\ &= \langle \alpha \mid \hat{U}^{\dagger} \hat{U} \mid \alpha \rangle \\ &= \left(\langle \alpha \mid \hat{U}^{\dagger} \right) \cdot \left(\hat{U} \mid \alpha \rangle \right) \\ &= \left(\hat{U} \mid \alpha \rangle \right)^{\dagger} \cdot \left(\hat{U} \mid \alpha \rangle \right) \\ &= \left(\lambda \mid \alpha \rangle \right)^{\dagger} \cdot \left(\lambda \mid \alpha \rangle \right) \\ &= \left(\lambda^* \langle \alpha \mid) \cdot \left(\lambda \mid \alpha \rangle \right) \\ &= \lambda^* \lambda \langle \alpha \mid \alpha \rangle. \end{split}$$

Use the fact that $\lambda^* \lambda = |\lambda|^2$.

$$\langle \alpha \, | \, \alpha \rangle = |\lambda|^2 \langle \alpha \, | \, \alpha \rangle$$

Since $|\alpha\rangle$ is not the zero vector, $\langle \alpha | \alpha \rangle \neq 0$. Divide both sides by $\langle \alpha | \alpha \rangle$.

 $1 = |\lambda|^2$

Take the square root of both sides.

 $|\lambda| = \pm 1$

The modulus of a complex number is always nonnegative, so the positive sign is chosen.

$$|\lambda| = 1$$

Therefore, any eigenvalue of a unitary transformation has a modulus of one.

Part (c)

Suppose that λ and μ are distinct eigenvalues of a unitary transformation \hat{U} : $\hat{U}|\alpha\rangle = \lambda |\alpha\rangle$ and $\hat{U}|\beta\rangle = \mu |\beta\rangle$. The aim is to show that the eigenvectors, $|\alpha\rangle$ and $|\beta\rangle$, are orthogonal, that is, $\langle \alpha | \beta \rangle = 0$.

$$\begin{split} \langle \alpha \mid \beta \rangle &= \langle \alpha \mid \cdot (\mid \beta \rangle) \\ &= \langle \alpha \mid \cdot (\mid \beta \rangle) \\ &= \langle \alpha \mid 1 \mid \beta \rangle \\ &= \langle \alpha \mid \hat{U}^{-1} \hat{U} \mid \beta \rangle \\ &= \langle \alpha \mid \hat{U}^{\dagger} \hat{U} \mid \beta \rangle \\ &= \left(\langle \alpha \mid \hat{U}^{\dagger} \right) \cdot \left(\hat{U} \mid \beta \rangle \right) \\ &= \left(\hat{U} \mid \alpha \rangle \right)^{\dagger} \cdot \left(\hat{U} \mid \beta \rangle \right) \\ &= \left(\lambda \mid \alpha \rangle \right)^{\dagger} \cdot \left(\mu \mid \beta \rangle \right) \\ &= \left(\lambda^* \langle \alpha \mid \rangle \cdot \left(\mu \mid \beta \rangle \right) \\ &= \lambda^* \mu \langle \alpha \mid \beta \rangle \end{split}$$

Bring both terms to the left side.

$$\langle \alpha \,|\, \beta \rangle - \lambda^* \mu \langle \alpha \,|\, \beta \rangle = 0$$

Factor the inner product.

$$(1 - \lambda^* \mu) \langle \alpha \,|\, \beta \rangle = 0$$

By the zero-product property,

$$1 - \lambda^* \mu = 0$$
 or $\langle \alpha | \beta \rangle = 0$.

The goal now is to show that this equation on the left is false. Multiply both sides of it by λ .

$$\lambda - \lambda^* \lambda \mu = 0$$

 $\lambda - (1)\mu = 0$

 $\lambda = \mu$

Use the fact that $\lambda^* \lambda = |\lambda|^2 = 1$.

Solve for λ .

This contradicts the initial assumption that the eigenvalues are distinct, so $1 - \lambda^* \mu \neq 0$. Therefore, $\langle \alpha | \beta \rangle = 0$, which means the eigenvectors corresponding to distinct eigenvalues of a unitary transformation are orthogonal.