Problem A. 30

A unitary transformation is one for which $\hat{U}^{\dagger} \hat{U}=1$.
(a) Show that unitary transformations preserve inner products, in the sense that $\langle\hat{U} \alpha \mid \hat{U} \beta\rangle=\langle\alpha \mid \beta\rangle$, for all vectors $|\alpha\rangle,|\beta\rangle$.
(b) Show that the eigenvalues of a unitary transformation have modulus 1 .
(c) Show that the eigenvectors of a unitary transformation belonging to distinct eigenvalues are orthogonal.
[TYPO: This should be the identity matrix I.]

Solution

$\underline{\text { Part (a) }}$
Let \hat{U} be a unitary transformation: $\hat{U}^{\dagger} \hat{U}=\mathrm{I}$. The inner product $\langle\hat{U} \alpha \mid \hat{U} \beta\rangle$ can be evaluated with respect to an orthonormal basis as shown in Equation A. 60 on page 472 of the textbook.

$$
\begin{aligned}
\langle\hat{U} \alpha \mid \hat{U} \beta\rangle & =(\mathrm{Ua})^{\dagger}(\mathrm{Ub}) \\
& =\left(\mathrm{a}^{\dagger} \mathrm{U}^{\dagger}\right)(\mathrm{Ub}) \\
& =\mathrm{a}^{\dagger}\left(\mathrm{U}^{\dagger} \mathrm{U}\right) \mathrm{b} \\
& =\mathrm{a}^{\dagger}(\mathrm{I}) \mathrm{b} \\
& =\mathrm{a}^{\dagger} \mathrm{b} \\
& =\langle\alpha \mid \beta\rangle
\end{aligned}
$$

Another way to prove the result is as follows.

$$
\begin{aligned}
\langle\hat{U} \alpha \mid \hat{U} \beta\rangle & =\langle\hat{U} \alpha| \hat{U}|\beta\rangle \\
& =\langle\alpha| \hat{U}^{\dagger} \hat{U}|\beta\rangle \\
& =\langle\alpha| \mathbf{I}|\beta\rangle \\
& =\langle\alpha| \cdot(\mathbf{I}|\beta\rangle) \\
& =\langle\alpha| \cdot(|\beta\rangle) \\
& =\langle\alpha \mid \beta\rangle
\end{aligned}
$$

Therefore, unitary transformations preserve inner products.

Part (b)

Suppose that λ is an eigenvalue of the unitary transformation $\hat{U}: \hat{U}|\alpha\rangle=\lambda|\alpha\rangle$. Then

$$
\begin{aligned}
\langle\alpha \mid \alpha\rangle & =\langle\alpha| \cdot(|\alpha\rangle) \\
& =\langle\alpha| \cdot(\mathbf{I}|\alpha\rangle) \\
& =\langle\alpha| \mathbf{I}|\alpha\rangle \\
& =\langle\alpha| \hat{U}^{-1} \hat{U}|\alpha\rangle \\
& =\langle\alpha| \hat{U}^{\dagger} \hat{U}|\alpha\rangle \\
& =\left(\langle\alpha| \hat{U}^{\dagger}\right) \cdot(\hat{U}|\alpha\rangle) \\
& =(\hat{U}|\alpha\rangle)^{\dagger} \cdot(\hat{U}|\alpha\rangle) \\
& =(\lambda|\alpha\rangle)^{\dagger} \cdot(\lambda|\alpha\rangle) \\
& =\left(\lambda^{*}\langle\alpha|\right) \cdot(\lambda|\alpha\rangle) \\
& =\lambda^{*} \lambda\langle\alpha \mid \alpha\rangle .
\end{aligned}
$$

Use the fact that $\lambda^{*} \lambda=|\lambda|^{2}$.

$$
\langle\alpha \mid \alpha\rangle=|\lambda|^{2}\langle\alpha \mid \alpha\rangle
$$

Since $|\alpha\rangle$ is not the zero vector, $\langle\alpha \mid \alpha\rangle \neq 0$. Divide both sides by $\langle\alpha \mid \alpha\rangle$.

$$
1=|\lambda|^{2}
$$

Take the square root of both sides.

$$
|\lambda|= \pm 1
$$

The modulus of a complex number is always nonnegative, so the positive sign is chosen.

$$
|\lambda|=1
$$

Therefore, any eigenvalue of a unitary transformation has a modulus of one.

Part (c)

Suppose that λ and μ are distinct eigenvalues of a unitary transformation $\hat{U}: \hat{U}|\alpha\rangle=\lambda|\alpha\rangle$ and $\hat{U}|\beta\rangle=\mu|\beta\rangle$. The aim is to show that the eigenvectors, $|\alpha\rangle$ and $|\beta\rangle$, are orthogonal, that is, $\langle\alpha \mid \beta\rangle=0$.

$$
\begin{aligned}
\langle\alpha \mid \beta\rangle & =\langle\alpha| \cdot(|\beta\rangle) \\
& =\langle\alpha| \cdot(\mathbf{I}|\beta\rangle) \\
& =\langle\alpha| \mathbf{I}|\beta\rangle \\
& =\langle\alpha| \hat{U}^{-1} \hat{U}|\beta\rangle \\
& =\langle\alpha| \hat{U}^{\dagger} \hat{U}|\beta\rangle \\
& =\left(\langle\alpha| \hat{U}^{\dagger}\right) \cdot(\hat{U}|\beta\rangle) \\
& =(\hat{U}|\alpha\rangle)^{\dagger} \cdot(\hat{U}|\beta\rangle) \\
& =(\lambda|\alpha\rangle)^{\dagger} \cdot(\mu|\beta\rangle) \\
& =\left(\lambda^{*}\langle\alpha|\right) \cdot(\mu|\beta\rangle) \\
& =\lambda^{*} \mu\langle\alpha \mid \beta\rangle
\end{aligned}
$$

Bring both terms to the left side.

$$
\langle\alpha \mid \beta\rangle-\lambda^{*} \mu\langle\alpha \mid \beta\rangle=0
$$

Factor the inner product.

$$
\left(1-\lambda^{*} \mu\right)\langle\alpha \mid \beta\rangle=0
$$

By the zero-product property,

$$
1-\lambda^{*} \mu=0 \quad \text { or } \quad\langle\alpha \mid \beta\rangle=0 .
$$

The goal now is to show that this equation on the left is false. Multiply both sides of it by λ.

$$
\lambda-\lambda^{*} \lambda \mu=0
$$

Use the fact that $\lambda^{*} \lambda=|\lambda|^{2}=1$.

$$
\lambda-(1) \mu=0
$$

Solve for λ.

$$
\lambda=\mu
$$

This contradicts the initial assumption that the eigenvalues are distinct, so $1-\lambda^{*} \mu \neq 0$.
Therefore, $\langle\alpha \mid \beta\rangle=0$, which means the eigenvectors corresponding to distinct eigenvalues of a unitary transformation are orthogonal.

